Wednesday, June 3, 2015

Changes in lumbar multifidus muscle function and nociceptive sensitivity in low back pain patient responders versus non-responders after dry needling treatment.

Abstract

BACKGROUND:

Little is known about the physiologic mechanism of dry needling. While some evidence suggests that dry needling may decrease nocioceptive sensitivity and facilitate muscle function, no studies to date have examined these physiologic changes compared to clinical outcomes.

OBJECTIVE:

To examine changes in lumbar multifidus (LM) muscle function and nociceptive sensitivity after dry needling in patients with LBP and to determine if such changes differ in patients that exhibit improved disability (responders) and those that do not (non-responders).

DESIGN:

Quasi-experimental study.

METHODS:

Sixty-six volunteers with mechanical LBP (38 men, age = 41.3 ± 9.2 years) completed the study. Ultrasound measurements and pain algometry of the LM were taken at baseline and repeated immediately following dry needling treatment to the LM muscles and after one week. The percent change in muscle thickness from rest to contraction was calculated for each time point to represent muscle function. Pressure pain threshold (PPT) was used to measure nociceptive sensitivity. Participants were dichotomized as responders and non-responders based on whether or not they experienced clinical improvement using the modified Oswestry Disability Index after one week. 2 × 3 mixed-model ANOVA were conducted for group (responders vs. non-responders) by time.

RESULTS:

Patient responders exhibited larger improvements in LM muscle contraction and nociceptive sensitivity 1 week, but not immediately, after dry needling than non-responders.

CONCLUSIONS:

Our results suggest that there may be lasting and clinically relevant sensorimotor changes that occur in LBP patients that improve with dry needling treatment that partially explain the physiologic mechanism of action.
Published by Elsevier Ltd.
Not much is known about the physiologic mechanism of dry needling. Although some evidence suggests that dry needling may decrease nocioceptive sensitivity and facilitate muscle function, no studies to date have examined these physiologic changes compared to clinical outcomes. The objective of this study was to examine changes in lumbar multifidus (LM) muscle function and nociceptive sensitivity after dry needling in patients with LBP and to determine if such changes vary in patients that exhibit improved disability (responders) and those that do not (non-responders). Patient responders showed greater improvements in LM muscle contraction and nociceptive sensitivity 1 week, but not immediately, after dry needling than non-responders.
These results indicate that there may be lasting and clinically relevant sensorimotor changes that occur in LBP patients that improve with dry needling treatment that partially account for the physiologic mechanism of action.
- See more at: http://www.physiospot.com/research/changes-in-lumbar-multifidus-muscle-function-and-nociceptive-sensitivity-in-low-back-pain-patient-responders-versus-non-responders-after-dry-needling-treatment/#sthash.pKUQYJeG.dpuf
Not much is known about the physiologic mechanism of dry needling. Although some evidence suggests that dry needling may decrease nocioceptive sensitivity and facilitate muscle function, no studies to date have examined these physiologic changes compared to clinical outcomes. The objective of this study was to examine changes in lumbar multifidus (LM) muscle function and nociceptive sensitivity after dry needling in patients with LBP and to determine if such changes vary in patients that exhibit improved disability (responders) and those that do not (non-responders). Patient responders showed greater improvements in LM muscle contraction and nociceptive sensitivity 1 week, but not immediately, after dry needling than non-responders.
These results indicate that there may be lasting and clinically relevant sensorimotor changes that occur in LBP patients that improve with dry needling treatment that partially account for the physiologic mechanism of action.
- See more at: http://www.physiospot.com/research/changes-in-lumbar-multifidus-muscle-function-and-nociceptive-sensitivity-in-low-back-pain-patient-responders-versus-non-responders-after-dry-needling-treatment/#sthash.pKUQYJeG.dpuf
Not much is known about the physiologic mechanism of dry needling. Although some evidence suggests that dry needling may decrease nocioceptive sensitivity and facilitate muscle function, no studies to date have examined these physiologic changes compared to clinical outcomes. The objective of this study was to examine changes in lumbar multifidus (LM) muscle function and nociceptive sensitivity after dry needling in patients with LBP and to determine if such changes vary in patients that exhibit improved disability (responders) and those that do not (non-responders). Patient responders showed greater improvements in LM muscle contraction and nociceptive sensitivity 1 week, but not immediately, after dry needling than non-responders.
These results indicate that there may be lasting and clinically relevant sensorimotor changes that occur in LBP patients that improve with dry needling treatment that partially account for the physiologic mechanism of action.
- See more at: http://www.physiospot.com/research/changes-in-lumbar-multifidus-muscle-function-and-nociceptive-sensitivity-in-low-back-pain-patient-responders-versus-non-responders-after-dry-needling-treatment/#sthash.pKUQYJeG.dpuf

Topical Pain Relief: Creams, Gels, and Rubs

When your joints are painful or your muscles ache, topical pain killers -- those you apply to your skin -- may offer relief. You'll find many products for topical pain relief at your local drugstore.
Here are some popular options and what you need to know if you'd like to give them a try.

Analgesic Creams, Rubs, and Sprays

Topical pain killers, or analgesics, are sprayed on or rubbed into the skin over painful muscles or joints. Although are all designed to relieve pain, different products use different ingredients. Here are the most common ingredients found in products available without a prescription.
  • Counterirritants. Ingredients such as menthol, methylsalicylate, and camphor are called counterirritants because they create a burning or cooling sensation that distracts your mind from the pain.
  • Salicylates. These same ingredients that give aspirin its pain-relieving quality are found in some creams. When absorbed into the skin, they may help with pain, particularly in joints close to the skin, such as the fingers, knees, and elbows.
  • Capsaicin. The main ingredient of hot chili peppers, capsaicin is also one of the most effective ingredients for topical pain relief. When first applied, capsaicin creams cause a warm tingling or burning sensation. This gets better over time. You may need to apply these creams for a few days up to a couple of weeks before you notice relief from pain.
Not everyone will have good pain relief from these preparations, and capsaicin in particular may not help with osteoarthritis pain.
Here's what you need to know to get the greatest effects and minimize the risks of these products:
  • Read the package insert and follow directions carefully. If there is an insert, save it to refer to later.
  • Never apply them to wounds or damaged skin.
  • Do not use them along with a heating pad, because it could cause burns.
  • Do not use under a tight bandage.
  • Wash your hands well after using them. Avoid touching your eyes with the product on your hands.
  • If you are allergic to aspirin or are taking blood thinners, check with your doctor before using topical medications that contain salicylates

Soothe Your Aching Back